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I. INTRODUCTION

Robots that dynamically make and break contact with
their environment experience discontinuities in their state
trajectories and dynamics. Traditional planning algorithms
have modeled these discontinuities using a hybrid systems
formulation, where each contact state is assigned a mode
and impacts are handled via mode transitions. However,
enumerating all possible modes for robots with many contact
surfaces is computationally intractable.

In contrast, contact-implicit trajectory optimization meth-
ods have been used to generate contact sequences as part
of the trajectory optimization problem without explicit enu-
meration of modes [1]. Unfortunately, these methods are
currently limited to first-order integration accuracy, which
negatively affects tracking performance [2]. We propose a
new family of contact-implicit trajectory optimization meth-
ods that combine ideas from discrete mechanics and com-
plementarity formulations of rigid-body contact to achieve
any desired order of integration accuracy. Several simulated
examples will be given using a third-order method.

II. BACKGROUND

The classic time-stepping formulation of rigid-body contact
proposed by Stewart and Trinkle [3] allows interpenetration
constraints and Coulomb friction to be written as a set
of linear complementarity conditions. At each timestep, an
optimization problem is solved to determine contact impulses
and propagate the system state forward to the next time
step [4]. Posa et al. [1] incorporated these complementarity
conditions into a direct trajectory optimization scheme to
generate walking and manipulation trajectories without pre-
specifying contact mode sequences.

A key feature of time-stepping methods is that they reason
about integrals of forces over a time step, and therefore avoid
technical issues associated with impulsive contact forces.
Variational integrators, based on discretization of Hamilton’s
principle of least action and D’Alembert’s principle of virtual
work, also share this property [5]. It is therefore natural to
combine them with the complementarity formulation of con-
tact. This provides a unified and mathematically consistent
framework for deriving time-stepping schemes of any desired
order of accuracy.

III. APPROACH

Following [5], we begin with the integral form of the
principle of virtual work:
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Taking variations at this stage results in the classical forced
Euler-Lagrange equation. Instead, we break the integrals in
(1) into smaller pieces,
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where tk+1 = tk+h and h is a fixed time step. Each smaller
integral inside the summation is then approximated using a
quadrature rule before taking variations. The result is a set
of algebraic equations relating states at adjacent time steps.
These algebraic equations form a variational integrator that
can be used to simulate the system dynamics. Their order of
accuracy is determined by the order of the quadrature rule
used to approximate the integrals in (1).

We use quadratic polynomials to represent state and input
trajectories over a time step, along with Simpson’s rule,
to produce a third-order variational integrator. We use the
resulting set of algebraic equations as equality constraints to
enforce dynamic feasibility in a direct trajectory optimization
method. We then add complementarity conditions [4] as
additional constraints to resolve contact impulses during each
time step. The resulting algorithm is similar in spirit to [1],
but achieves higher accuracy with a given number of knot
points. Given its third-order integration accuracy, the new
time-stepping scheme should provide performance on par
with hybrid collocation methods [2] while being fully contact
implicit.
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